Doc. No.: SV01	Version: 1	Smart Valve Proje	ect Tees	TEXAS A&M ENGINEERING EXPERIMENT STATION
	Smart	t Valve T	est Rep	ort
			•	
		Prepared By:	Akash Sali	
		Version:	1	
		Date:	8/15/19	
		Project Owner:	Flow Dynamics	
		Project Manager:	John Pappas	
		1 ojeet hundger	Texas A&M Engine	eering Experiment Station

Revision History Version No. Date Author Description 1 8/15/19 Akash S. First release	Doc. No.: SV	V01	Versio	on: 1	Sm	art Valve Pr	oject	TIT	TEXAS A&M ENGINEERING EXPERIMENT STATION
Version No. Date Author Description 1 8/15/19 Akash S. First release									
Version No. Date Author Description 1 8/15/19 Akash S. First release						Revisio	n Histo	ory	
1 8/15/19 Akash S. First release	Version No.]	Date	Au	thor			Descript	ion
	1	8/	/15/19	Aka	ash S.			First rele	ase

Doc. I	No.: SV01	Version: 1	Smart Valve Project		TEXAS A&M ENGINEERING EXPERIMENT STATION
	Tabl	le of Contents	S		
1. In	ntroductio	n		•••••	1
1.1.	Purpos	e of Test Repoi	rt		1
1.2.	Scope o	of Testing			1
2. T	est Strateg	gy		•••••	1
2.1.	Test Cas	Ses			1
a. b.	Case 1: F Case 2: P	ressure Surge Te	st		1
C.	Case 3: A	ir Bubble Test			
a. e.	Case 4: A Case 5: F	ir Test ixed Volume Test	t		
f.	Case 6: V	ariable Flow Rate	e Test		2
3. T	est Prepar	ration			2
3.1.	Test En	vironment			2
a. b.	Test Faci Test Setu	111ty 1p			
C.	List of eq	luipment			
4 . T	est Proced	lures		•••••	4
4.1.	Flow Ra	ate Test			4
4.2.	Pressur	re Surge Test			5
4.3.	Air Bub	ble Test			5
4.4.	Air Test	t			6
4.5.	Fixed V	olume Test			6
4.6.	Variabl	e Flow Rate te	st		7
5. T	est Observ	vations and Re	esults		7
5.1.	Flow Ra	ate Test			7
5.2.	Pressur	re Surge Test			9
5.3.	Air Bub	ble Test			10
5.4.	Air Test	t			10
5.5.	Fixed V	olume Test			10
5.6.	Variabl	e Flow Rate Te	st		11
6. Co	onclusion.				
7. A	nnexures .				
Ann	exure 1: Sr	nart Valve Tes	t Setup		12
Ann	exure 2: P&	&ID of the Test	Setup		15

Doc. No.: SV01	Version: 1	Smart Valve Project	Tit	TEXAS A&M ENGINEERING EXPERIMENT STATION
Annexure 3: To	est Readings			16

Introduction 1.

1.1. **Purpose of Test Report**

The purpose of this document is to summarize the strategy that was used for testing of the smart valve and their results. This test report will contain information on the types of tests performed, necessary assumptions or constraints for each test, test procedure, the list of resources used, test results and conclusions.

1.2. **Scope of Testing**

The smart valve will be tested for its functionality features such as arresting flow rate variability, resistance against sudden pressure surges and rectification of water meter reading error against air in the pipeline. Tests to be conducted to prove each of the above features will be defined in section 2 of this document.

2. **Test Strategy**

In order to test and prove the promised functionality features of the smart valve, it has to be exposed to various tests. To do so, the test setup should allow:

- a. Variation in fluid flow rate
- b. Variation in supply pressure
- c. Introduction of air in the flow
- d. Measurement of flow and volume in the system for various combinations of parameters mentioned in points a. to c.

Based on these combinations various cases have been designed for the testing of the valve.

2.1. **Test Cases** a.

Case 1: Flow Rate Test

In this case, water will be introduced into the test set up at same pressure as that supplied by the municipality. The flow rate will be adjusted with the help of a globe valve. Outlet pressure, flow rate and the volume of water flowed through the system will be measured to verify the benefit of smart valve at different flow rates.

b. **Case 2: Pressure Surge Test**

A sudden spike in the supply pressure will be created with the help of a centrifugal (non-positive displacement) pump at the inlet of the system. The objective of this test case is to verify the benefit of smart valve against sudden pressure surges in pipe lines.

Case 3: Air Bubble Test C.

Air bubbles will be added to the water flow using an air compressor and pressure regulator. A perforated disc will be used to ensure air bubble formation in the water flow stream. This test will be used to verify if the smart valve can subdue water bubbles that are present inherently in the pipeline thereby reducing water meter reading error.

Doc. No.: SV01Version: 1Smart Valve ProjectTEXAS A&M ENGINEERING EXPERIMENT STATION					
	Doc. No.: SV01	Version: 1	Smart Valve Project	T	TEXAS A&M ENGINEERING EXPERIMENT STATION

d. Case 4: Air Test

Only air will be supplied through the system. This is to check the effect of the smart valve on the large air pockets that are present in pipelines in places where there is intermittent supply of water.

e. Case 5: Fixed Volume Test

A fixed volume of water will be supplied through the system without any time constraints. This is to test the effect of smart valve on water meter readings when a known amount of water is passed through it.

f. Case 6: Variable Flow Rate Test

A continuous rise and fall in flow rates will be generated in the system with the help of the pump. This is to test the effect of smart valve on varying flow rates in pipe lines.

3. Test Preparation

3.1. Test Environment

a. Test Facility

The test setup was developed, and the valve was tested at Process Engineering Research and Development Center (PERDC) at Texas A&M University, Rellis Campus.

b. Test Setup

All tests stated in section 2 were conducted on the test set up as represented in the figure 1. The test setup is divided into four lines distinguished by different colors. These four lines are: Water (Blue), Air (Yellow), Smart Valve (SV) (Green) and Bypass (Red). Water line supplies water to the system at either municipal supply pressure or higher (using pump). Air line supplies air to the system which shall be used to introduce air bubbles in the water stream. Smart valve is installed on the SV line which runs parallel to the bypass line. Bypass line is used to measure readings when the smart valve is not in the system. Three way valves, TV1 and TV2, can be used appropriately to direct the flow through either SV line or the bypass line. Pressure regulating valves, PRV1 and PRV2, are installed to regulate water and air inlet pressures respectively. Pressure gauges, PG1, PG2 and PG3, indicate pressures at the inlet, after water meter, and at the outlet respectively. Globe valve, GV1, is installed to control the volume flow rate of water. Flow rate meters, FT1 and FT2, indicate real-time volume flow rate of the fluid flowing through the system at the inlet and outlet respectively. Water meter, WM, is installed to indicate the fluid volume flowed through the system for each test case. A 5 gallon capacity volumetric container is also added at the outlet to measure the volume of water flowed through the system. With this setup, all the test requirements can be addressed. Refer Annexure 1 for actual images of the test setup and Annexure 2 for scaled P&ID.

c. List of equipment

Based on the process and instrumentation diagram in figure 1, following equipment were used for development of the test setup:

Sr. No.	Item	Size/ Specification	Qty
1	PVC pipes (Transparent)	³ ⁄ ₄ " Sch 40	12 ft
2	PVC pipes (Opaque)	³ ⁄ ₄ " Sch 40	10 ft
3	T joints	³ ⁄ ₄ " Sch 40	4
4	L joints	³ ⁄ ₄ " Sch 40	13
5	Socket Couplings	³ ⁄ ₄ " Sch 40	1
6	Threaded Coupling (w/ Male thread)	³ ⁄ ₄ " Sch 40	20
7	Threaded Coupling (w/ Female Thread)	³ ⁄ ₄ " Sch 40	15
8	Reducer T joint for pressure gauge	0.75" to 0.25"	3
9	Union joints	³ ⁄ ₄ " Sch 40	4
10	Shut-off Valve (Ball valve)	3/4"	2
11	Globe Valve	3/4"	1
12	Three way valve	3⁄4"	2
13	Water pressure regulator	³ / ₄ " (Range: 0 – 100 psi)	1
14	Air pressure regulator	¹ / ₄ " (Range: 0 – 100 psi)	1

Doc. No.: SV01	Version: 1	Smart Valve Project	T	TEXAS A&M ENGINEERING EXPERIMENT STATION

Sr. No.	Item	Size/ Specification	Qty
15	Pressure Gauge	2.5" dial (Range: 0-100 psi)	3
16	Flow Rate Meter	³ ⁄4" (Range: 0-25 gpm)	2
17	Water Meter	³ ⁄ ₄ " (Precision: 0.01 gallons)	1
18	Centrifugal pump	-	1

4. Test Procedures

All the tests were performed at three settings of the smart valve spring:

- 1. Minimum setting (0 clicks)
- 2. Mid Setting (8 Clicks)
- 3. Max Setting (15 Clicks)

Each test condition was conducted three times for ensuring the repeatability of test results. Refer to P&ID in

Figure 1 to navigate along the test procedures.

Note: Before the start of each test run, it is to be ensured that all valves are in a position such that there is no fluid flow in the system.

4.1. Flow Rate Test

Objective: To test the effect of smart valve at different water flow rates. **Procedure:**

- 1. Turn the water supply on. Ensure three way valves are positioned such that there is no flow in the system yet.
- 2. Regulate the static supply pressure to normal municipal water supply pressure (50 psi).
- 3. Open shut-off valve, HV2.
- 4. Open the globe valve, GV, to set a flow rate.
- 5. Record initial water meter (WM) reading.
- 6. Using three way valves, TV1 and TV2, direct the flow to bypass line and start the timer.
- 7. Measure readings on PG1, FT1, PG2, PG3 and FT2.
- 8. Stop the flow using TV1 when timer indicates 60 sec.
- 9. Measure final water meter (WM) reading.
- 10. Reset flow meter (FT) readings to zero.
- 11. Record initial water meter reading.
- 12. Using three way valves, TV1 and TV2, direct the flow to smart valve line and start the timer.
- 13. Repeat steps 8 to 11.
- 14. Repeat the test for different flow rates by controlling GV.

Doc. No.: SV01	Version: 1	Smart Valve Project	1147	TEXAS A&M ENGINEERING EXPERIMENT STATION
4.2. Pres Obje Prod 1. 7 2. H (3. 0 4. H 5. H 6. U 9. N 10. V 11. S 12. N 13. H 14. H 15. U	ssure Surge T ective: To test cedure: Furn the water there is no flow Regulate the su (50 psi). Open shut-off v Fully open the Record initial w Jsing three way start the timer. Record reading the timer indo of ~10-15psi. Measure readir readings. When the timer normal. Stop the flow u Measure final v Reset flow met Record initial w Jsing three way	est the effect of smart valve or supply on. Ensure three w v in the system yet. pply pressure to normal m valve, HV2. globe valve, GV1, for maxin vater meter (WM) reading. y valves, TV1 and TV2, dire gs on PG1, FT1, PG2, PG3 ar dicates 25 sec, turn the pur- ngs on PG1, FT1, PG2, PG3 a r hits 55 sec, turn the pur- sing TV1 when timer indica- vater meter (WM) reading. er (FT) readings to zero. vater meter reading. y valves, TV1 and TV2, dire	n sudden pr vay valves a nunicipal w num supply ect the flow nd FT2 as n mp on, to cr and FT2 as p off to turr ates 70 sec	ressure surges. The positioned such that ater supply pressure of flow rate (~8.5gpm). To bypass line and ormal condition reate a pressure surge spiked condition the flow back to To smart valve line
16. F 4.3. Air J Obje Prod 1. T t 2. F (3. S 4. (5. (6. F 7. U s 8. F 9. A s 10. N	Repeat steps 7 Bubble Test ective: To test cedure: Furn the water here is no flow Regulate the su 50 psi). Set static air su Open shut-off v Open the globe Record initial v Jsing three wa start the timer. Record reading As the timer ind supply on. Measure readir	to 13. the air bubble reduction fe supply on. Ensure three w in the system yet. pply pressure to normal m pply pressure at 15 psi usin valve, HV2. valve, GV1, to set required vater meter (WM) reading. y valves, TV1 and TV2, direct so n FT2 as normal condition dicates 10 sec, open shut-open ngs on FT2 as 'air supply or	eature of sm ray valves a nunicipal wa ng PRV2. water flow ect the flow ion reading off valve HV n' condition	hart valve re positioned such that ater supply pressure v rate (~7gpm). to bypass line and s. 1, to turn the air a readings.

Doc. No.: SV01	Version: 1	Smart Valve Project	TI	TEXAS A&M ENGINEERING EXPERIMENT STATION
----------------	------------	---------------------	----	---

11. Observe the all bubbles in the line.	11.	Observ	ve the	air	bubble	s in	the	line.
--	-----	--------	--------	-----	--------	------	-----	-------

- 12. When the timer hits 40 sec, turn the air supply off.
- 13. Stop the flow using TV1 when timer indicates 60 sec.
 - 14. Measure final water meter (WM) reading.
 - 15. Reset flow meter (FT) readings to zero.
 - 16. Record initial water meter reading.
 - 17. Using three way valves, TV1 and TV2, direct the flow to smart valve line and start the timer.
 - 18. Repeat steps 8 to 15.

4.4. Air Test

Objective: To test the effect of smart valve on air flow **Procedure:**

- 1. Set static air supply pressure at 11 psi using PRV2.
- 2. Open shut-off valves, HV2 and HV1.
- 3. Record initial water meter (WM) reading.
- 4. Using three way valves, TV1 and TV2, direct the flow to bypass line and start the timer.
- **5.** Stop the flow using TV1 when timer indicates 10 sec.
- 6. Record final water meter reading.
- 7. Using three way valves, TV1 and TV2, direct the flow to smart valve line and start the timer.
- 8. Repeat steps 5 to 6.

4.5. Fixed Volume Test

Objective: To test the effect of smart valve on water meter reading when a known volume of fluid is flowed through it.

Procedure:

- 1. Place a volumetric container, with a measuring capacity of 5 gallons, at the outlet of the test setup.
- 2. Turn the water supply on. Ensure three way valves are positioned such that there is no flow in the system yet.
- 3. Regulate the supply pressure to normal municipal water supply pressure (50 psi).
- 4. Open shut-off valve, HV2.
- 5. Fully open the globe valve, GV1, for maximum supply flow rate (~9gpm).
- 6. Record initial water meter (WM) reading.
- 7. Using three way valves, TV1 and TV2, direct the flow to bypass line and start the timer.
- 8. When flow rate meter indicates that 5 gallons of volume has passed through the system, turn the supply off using TV1.
- 9. Check if the water level on volumetric container has hit 5 gallons.
- 10. Record the final water meter reading.
- 11. Reset the flow rate meter to zero.
- 12. Using three way valves, TV1 and TV2, direct the flow to smart valve line and start the timer.

Doc. No.: SV01	Version: 1	Smart Valve Pro	oject	∏ ‡∓न	TEXAS A&M ENGINEERING EXPERIMENT STATION		
13 4.6. Va Ot Pr 1. 2. 3. 4. 5. 7. 8. 9. 10 11 12 13 14 15 5. Test Ob	A. Repeat steps pictive: To ter ocedure: Turn the wat that there is the (50 psi). Open shut-off Fully open the Record initia Turn the purn Using three vistart the time After 10 sec, Turn the purn Repeat the cy Using TV1, the Reset the flow Using three vistart the Reset the flow Using three vistart the Repeat steps Servations	8 to 11. Rate test st the effect of sma ter supply on. Ensur- no flow in the syste supply pressure to if valve, HV2. he globe valve, GV1, l water meter (WM np on to generate a way valves, TV1 and er. turn the pump off t np back on after 10 ycle 5 times. urn the supply off w nal water meter rea way valves, TV1 and timer. 8 to 13. and Results	rt valve re three m yet. normal for max) readin higher f l TV2, di to reduct sec. when tim ading. o. l TV2, di	continuous way valves municipal imum supp g. low rate (~ irect the flo e the flow r er indicates	ely varying flow rates. are positioned such water supply pressure oly flow rate. -9.8 gpm). w to bypass line and ate (~8.3 gpm). s 110sec. w to smart valve line		
 Based on the recorded test data (Refer annexure 3), following results are observed from each test: 5.1. Flow Rate Test a. Smart valve set at minimum setting (0 clicks) Output Conditions when Smart Valve was introduced in the system: 							
Inlet Flow Rate	Inlet Flow Rate~6.5 gpm~8.5 gpm~10 gpm						
Dynamic wate upstream of Si	r pressure nart Valve	Increased by 50%	Incr 2	eased by 6.67%	Increased by 15.78%		
Dynamic wate downstream o Valve	r pressure f Smart	Decreased by 16.67%	Decr	eased by 10%	Decreased by 7.69%		
Flow rate			Decre	eased by 5%	б		
Volume of flui by water mete	d recorded r	Decreased by 5% Decreased by 4.35% (0.325 gal in 60 sec)					

b. Smart valve set at mid setting (8 clicks)

Doc. No.: SV01	Version: 1	Smart Valve Pr	oject	TEXAS A&M ENGINEERING EXPERIMENT STATION			
Output Conditions when Smart Valve was introduced in the system:							
Inlet Flow Rate		~6.5 gpm	~8	.5 gpm	~10 gpm		
Dynamic water pressure upstream of Smart Valve		Increased by 104%	Increased by 69%		Increased by 40%		
Dynamic water pressure downstream of Smart Valve		Decreased by 22.2%	Decreased by 12.12%		Decreased by 23.9%		
Flow rate		Decreased by 14.9%	Decr	eased by 8.5%	Decreased by 10.7%		
Volume of fluid recorded by water meter		Decreased by 13.58% (0.881 gal in 60 sec)	Decreased by 8.13% (0.895 gal in 60 sec)		Decreased by 10.12% (0.998 gal in 60 sec)		

c. Smart valve set at max setting (15 clicks)

Output Conditions when Smart Valve was introduced in the system:

Inlet Flow Rate	~6.5 gpm	~8.5 gpm	~10 gpm
Dynamic water pressure upstream of Smart Valve	Increased by 140.74%	Increased by 80.97%	Increased by 47.76%
Dynamic water pressure downstream of Smart Valve	Decreased by 33.33%	Decreased by 34.24%	Decreased by 31.68%
Flow rate	Decreased by 21.21%	Decreased by 15.52%	Decreased by 17.15%
Volume of fluid recorded by water meter	Decreased by 22.41% (1.447 gal in 60 sec)	Decreased by 14.55% (1.203 gal in 60 sec)	Decreased by 17.31% (1.715 gal in 60 sec)

Thus, with this test it can be concluded that, after the introduction of smart valve:

1. There was a rise in upstream pressure.

2. There was a fall in downstream pressure.

3. Flow rate in the system reduced.

4. Volume recorded by the water meter in a set amount of time reduced.

5. These differences increased after the smart valve spring was tightened.

Doc. No.: SV01	Version: 1	Smart Valve Project	∏ ‡ ∓-	TEXAS A&M ENGINEERING EXPERIMENT STATION

5.2. Pressure Surge Test

a. Smart valve set at minimum setting (0 clicks) Output Conditions when Smart Valve was introduced in the system:

Dynamic water pressure spike unstream of	Decreased by 30.7%
Smart Valve	
Dynamic water pressure spike downstream	No change observed
of Smart Valve	
Rise in flow rate due to pressure spike	Decreased by 16.37%
Volume of fluid recorded by water meter	Decreased by 4.75% (0.476 gal in
	70 sec)

b. Smart valve set at mid setting (8 clicks)

Output Conditions when Smart Valve was introduced in the system:

Dynamic water pressure spike upstream of Smart Valve	Decreased by 44.04%
Dynamic water pressure spike downstream of Smart Valve	Decreased by 29.01%
Rise in flow rate due to pressure spike	Decreased by 9.95%
Volume of fluid recorded by water meter	Decreased by 9.34% (0.9916 gal in
	70 sec)

c. Smart valve set at max setting (15 clicks) Output Conditions when Smart Valve was introduced in the system:

Dynamic water pressure spike upstream of Smart Valve	Decreased by 63.98%
Dynamic water pressure spike downstream of Smart Valve	Decreased by 28.57%
Rise in flow rate due to pressure spike	Decreased by 10.98%
Volume of fluid recorded by water meter	Decreased by 16.35% (1.74 gal in 70sec)

Thus, with this test it can be concluded that, after the introduction of smart valve:

1. Downstream and upstream pressure spike decreased.

2. Rise in flow rate caused by pressure spike decreased.

3. Volume of fluid recorded by water meter in a set amount of time decreased.

4. Above difference increased as the smart valve spring was tightened.

Doc. No.: SV01	Version: 1	Smart Valve Pro	oject	T Å I I	TEXAS A&M ENGINEERING EXPERIMENT STATION		
5.3. Air F Outp	Bubble Test out Conditions	when Smart Valve	was int	roduced in	the system:		
Smart Valve Sp Setting	ring	Minimum (0 Clicks)	8)	Mid 8 Clicks)	High (15 Clicks)		
Volume of fluid recorded by wa meter	l De ater (0.	creased by 5.05% 355 gal in 60 sec)	Dec 12.79 in	Pecreased by Decreased by Decreased by 9% (0.886 gal 19.26% (1.33 ga			
Air Bubbles in system	the La	rge volume of air bubbles visible	Low V bubl	olume of ai oles visible	r Low Volume of air bubbles visible		
Thus valve	s, with this tes e: Yolume of air b	t it can be conclude	d that, a	after the int	roduction of smart		
2. T	he rate of red	uction increased as	the sm	art valve sp	ring was tightened.		
5.4. Air 7 Outp	Cest out Conditions	s when Smart Valve	was int	roduced in	the system:		
Smart Valve Sp Setting	ring	Minimum (0 Clicks)	(1	Mid 8 Clicks)	High (15 Clicks)		
Volume of air r water meter (in	ecorded by n 10 sec)	Decreased by 3.07 gal	Decre	eased by 8.5 gal	3 No air flow recorded		
The	us, with this to in the system	est, it can be conclue	ded that g rise in	t: smart val water met	ve reduced the flow of er reading.		
5.5. Fixe Outp	d Volume Te out Conditions	st s when Smart Valve	was int	roduced in	the system:		
Smart Valve Sp Setting	oring	Minimum (0 Clicks)	Mid (8 Cli	cks)	High (15 Clicks)		
Volume record water meter	led by	Very Small change observed (0.17%)	Very S obser	Small chang ved (0.11%	;e Very Small) change observed (0.05%)		
Time taken to gallon water co	fill 5 ² ontainer 1	4.57% (~1.6 sec) nore	11.12 sec) n	% (~3.97 10re	17.38% (~6.05 sec) more		
 Thus, with this test it can be concluded that, after the introduction of smart valve: 1. No to very small change was observed in the volume recorded by water meter. 							

Doc. No.: SV01	Version: 1	Smart Valve Proj	ect	निर्मेनन	TEXAS A&M ENGINEERING EXPERIMENT STATION		
 It took more time to fill the 5 gallon volumetric container at the outlet. Time difference increased as the spring was tightened. Variable Flow Rate Test 							
Outp	ut Conditions	s when Smart Valve v	vas int	roduced in t	the system:		
Smart Valve Sp Setting	oring	Minimum (0 Clicks)	MinimumMid(0 Clicks)(8 Clicks)		High (15 Clicks)		
Flow Rate 1 (Original = ~9.	8 gpm)	Reduced to ~9.4gpm	R	educed to ~8.9gpm	Reduced to ~8.4gpm		
Flow Rate 2 (Original = ~8.	3 gpm)	Reduced to ~8gpm	R	educed to ~7.3gpm	Reduced to ~6.9gpm		
Volume recorded by water meterDecreased by 2.82% (0.465gal in 110sec)Decreased by 9.65% (1.59gal in 110sec)Decreased 14.7% (2.44 in 110sec)							
Thus, with this test it can be concluded that, after the introduction of smart							

valve:

1. There was a reduction in flow rates.

2. Volume of fluid recorded by water meter decreased.

3. Above difference increased when the smart valve spring was tightened.

Conclusion 6.

6.1. Smart Valve's functionality in reducing water flow rate, reducing effect of pressure spikes, and reducing air bubble volume in a piping system is validated.

6.2. The effect of smart valve on each of the above conditions is dependent on its spring setting.

a. Low to no effect is observed when the spring is in lowest setting.

b. The effect increases as the spring is tightened.

Doc. No.: SV01	Version: 1	Smart Valve Project	T	TEXAS A&M ENGINEERING EXPERIMENT STATION

7. Annexures

Annexure 1: Smart Valve Test Setup

Annexure 2: P&ID of the Test Setup	Doc. No.: SV01	Version: 1	Smart Valve Project	TËŦ	TEXAS A&M ENGINEERING EXPERIMENT STATION						
		Anne	exure 2: P&ID of the Te	st Setup							

Doc. No.: SV01	Version: 1	Smart Valve Project	Ţ <u></u> Ţ	TEXAS A&M ENGINEERING EXPERIMENT STATION							
	Annovuro 2: Tost Poodings										
Annexure 3: Test Readings											

F

Flow Rate Test								Date =0	7/30/19			
Smart Valv	e Setting =	= Lowest (0 clicks)							-			
Test Time =	= 60 sec		Static Wat	er Pressure	e = 50 Psi							
			Flow	Rate	Water	Meter	Pressu	re Gauge Ro	eadings	V	olume passe	ed
										Flow	Flow	
Test	#Run	Smart Valve Condition	Inlat	Outlot	Initial	Final	Inlat	Contor	Outlot	Meter	Meter	Water
Condition			inet	Outlet	Inntial	i iliai	iniet	Center	Outlet	reading at	reading at	Meter
										inlet	outlet	
	Units:	(Open/Close)	gr	om	gal	ons		psi			gallons	
	1	Open	5.7	5.9	1312.595	1318.34	12	11	5	5.503	5.625	5.745
1	1	Close	6	6.2	1306.12	1312.205	8	7	6	5.839	5.96	6.085
1	2	Open	5.7	5.9	1330.915	1336.7	12	11	5	5.539	5.663	5.785
	2	Close	6	6.2	1324.495	1330.57	8	7	6	5.832	5.949	6.075
	1	Open	6.7	6.9	1356.93	1363.635	15	13	7	6.492	6.602	6.705
2	1	Close	7	7.1	1349.41	1356.41	11	9	7	6.758	6.866	7
2	2	Open	6.7	6.9	1371.31	1377.96	15	13	7	6.435	6.544	6.65
	2	Close	7	7.12	1364.17	1371.1	11	9	7	6.699	6.808	6.93
	1	Open	7.6	7.8	1444.605	1452.135	19	16	9	7.289	7.411	7.53
3	1	Close	8.1	8.2	1397.5	1405.615	15	13	10	7.819	7.956	8.115
5	2	Open	7.6	7.8	1437.04	1444.605	19	16	9	7.317	7.442	7.565
	2	Close	8	8.2	1428.605	1436.255	15	12	10	7.623	7.733	7.65
1	1	Open	8.6	8.8	1469.11	1477.635	22	19	12	8.244	8.397	8.525
1	1	Close	9	9.2	1459.63	1468.5	19	15	13	8.597	8.732	8.87
	2	Open	8.5	8.6	1487.51	1495.93	22	19	12	8.132	8.287	8.42
	<u> </u>	Close	9	9.2	1478.185	1486.965	19	16	12	8.612	8.747	8.78

Annexure 3a: Flow Rate Test

			Date = 08/01/19									
Smart Valv	e Setting :	= Mid (8 Clicks)										
Test Time :	= 60 sec		Static Wat	er Pressure	= 50 Psi							
			Flow	Rate	Water	Meter	Pressu	re Gauge Re	eadings	V	olume pass	ed
										Flow	Flow	
Test	#Run	Smart Valve Condition	Inlat	Quitlat	Initial	Final	Inlat	Contor	Outlot	Meter	Meter	Water
Condition			met	Outlet	Initial	Filidi	met	Center	Outlet	reading at	reading at	Meter
_										inlet	outlet	
	Units:	(Open/Close)	gr	om	gal	lons		psi			gallons	
	1	Close	8.2	8.3	2463.48	2471.55	13	12	9	7.78	8.18	8.07
	T	Open	7.7	7.9	2496.83	2504.61	25	22	9	7.512	7.617	7.78
1	n	Close	8.6	8.7	2471.55	2480.19	15	14	11	8.35	8.482	8.64
	Z	Open	7.6	7.9	2504.61	2512.34	25	22	9	7.466	7.57	7.73
	2	Close	8.6	8.8	2480.19	2488.76	16	14	11	8.293	8.418	8.57
	5	Open	7.7	7.8	2489.14	2496.83	24	22	9	7.425	7.532	7.69
	1	Close	10	10.2	2513.16	2523.125	22	18	14	9.797	9.655	9.965
	L	Open	8.9	9.1	2523.33	2532.23	30	26	11	8.624	8.758	8.9
	2	Close	10	10.2	2532.38	2542.34	22	18	14	9.658	9.803	9.96
2	Z	Open	9	9.2	2542.51	2551.42	29	26	10	8.624	8.759	8.91
	2	Close	10.1	10.3	2560.34	2569.99	20	16	14	9.335	9.472	9.65
	5	Open	9	9.1	2551.42	2560.19	29	26	11	8.489	8.629	8.77
	1	Close	6.5	6.7	2577.1	2583.59	9	8	6	6.271	6.374	6.49
3	T	Open	5.7	5.8	2602.41	2608.09	18	16	4	5.441	5.531	5.68
	2	Close	6.5	6.7	2583.59	2590.06	9	8	6	6.252	6.355	6.47
	Z	Open	5.4	5.6	2608.68	2614.15	18	15	5	5.25	5.324	5.47
	2	Close	6.5	6.7	2590.06	2596.58	9	8	6	6.303	6.405	6.52
	5	Open	5.6	5.7	2596.725	2602.41	19	16	5	5.447	5.536	5.685

Annexure 3a: Flow Rate Test

			Date = 08/01/19									
Smart Valv	e Setting =	= Highest (15 Clicks)										
Test Time =	= 60 sec		Static Wat	er Pressure	= 50 Psi							
			Flow	Rate	Water	Meter	Pressu	re Gauge Re	eadings	V	olume passe	ed
										Flow	Flow	
Test	#Run	Smart Valve Condition	Inlot	Outlot	Initial	Final	Inlat	Contor	Outlot	Meter	Meter	Water
Condition			innet	Outlet	Initial	Filidi	iniet	Center	Outlet	reading at	reading at	Meter
										inlet	outlet	
	Units:	(Open/Close)	gr	m	gal	lons		psi			gallons	
	1	Open	7.2	7.3	1797.86	1805.08	28	25	7	6.959	7.091	7.22
	T	Close	8.6	8.8	1788.18	1796.725	16	14	11	8.266	8.394	8.545
1	2	Open	7.2	7.5	1819.94	1827.215	28	26	7	7.014	7.146	7.275
1	Z	Close	8.5	8.7	1809.87	1818.235	15	13	10	8.187	8.322	8.365
	2	Open	7.3	7.5	1900.57	1907.95	29	25	7	7.121	7.252	7.38
	5	Close	8.8	8.9	1890.945	1899.64	16	14	11	8.431	8.56	8.695
	1	Open	8.4	8.5	1844.335	1852.66	32	29	10	8.029	8.177	8.325
	T	Close	10	10.2	1833.66	1843.61	22	17	14	9.654	9.801	9.95
2	2	Open	8.1	8.3	1863.56	1871.65	32	29	9	7.788	7.931	8.09
2	Z	Close	10.2	10.2	1853.205	1863.31	22	18	14	9.81	9.962	10.105
	2	Open	8.1	8.3	1882.035	1890.135	32	29	9	7.8	7.942	8.1
	5	Close	9.7	9.9	1872.245	1881.85	21	16	13	9.302	9.444	9.605
	1	Open	5	5.2	1924.23	1929.415	22	21	4	4.975	5.074	5.185
3	L	Close	6.5	6.6	1917.06	1923.495	9	8	6	6.221	6.326	6.435
	n	Open	5.1	5.3	1936.45	1941.25	21	20	4	4.972	5.068	4.8
	Z	Close	6.5	6.6	1929.76	1936.21	9	7	6	6.231	6.339	6.45
	2	Open	5	5.1	1948.48	1953.51	22	20	4	4.828	4.918	5.03
	5	Close	6.5	6.6	1941.81	1948.28	9	7	6	6.243	6.349	6.47

				Date =07/30/19								
Smart Valv	ve Setting = Lowe	est (0 clicks)										
Total Test	Time = 70 sec	Surge Started at 25 sec	Surge Stoped at 55	5 sec	Static Wat	er Pressure	= 50 psi					
		Pressure Condition	Pressure Gauge	Readings ([Dynamic)	Water Read	[.] Meter dings	Flow	Rate	Volume passed		
#Run	Smart Valve Condition		Inlet	Center	Outlet	Initial	Final	Inlet	Outlet	Flow rate Meter at inlet	Flow rate Meter at outlet	Water Meter
Units:	(Open/Close)		psi			gallons gr		om l		gallons		
	Close	Normal	14	12	10	1229.865	1230 815	7.8	8.1	9.625	9 761	9.95
1	Close	Spiked	20	17	13	1225.805	1255.015	9.3	9.5	5.025	5.701	5.55
	Open	Normal	18	16	9	1240 565	1250 075	7.8	7.7	0.211	9.379	0.51
	Open	Spiked	24	22	13	1240.505	1230.073	8.9	9.2	9.211		9.51
	Close	Normal	14	12	9	1250.76	1260.90	8	8.2	0.607	0.956	10.12
	Close	Spiked	21	17	13	1230.70	1200.89	9.4	9.6	9.097	9.850	10.15
2	Open	Normal	19	16	9	1201 20	1270.025	7.8	7.8	0.207	0.450	0 5 4 5
	Open	Spiked	25	21	13	1201.59	1270.955	9.1	9.2	9.297	9.450	9.545
3	Close	Normal	14	12	9	1271 62	1201 575	7.8	8.1	0.611	0.77	0.045
	Close	Spiked	21	17	14	12/1.05	1201.575	9.4	9.5		9.77	9.945
	Open	Normal	18	16	9	1202 005 1201 02	1201 625	7.7	7.8	0.227	27 0 409	
	Open	Spiked	24	21	12	1202.085	1291.025	9	9.1	9.257	9.400	9.54

			Pressure Surge Tes	st					Date = 08/01/19			
Smart Valv	ve Setting = Mid (8 Clicks)										
Total Test	Time = 70 sec	Surge Started at 25 sec	Surge Stoped at 55	sec	Static Wat	er Pressure	= 50 psi					
			Pressure Gauge	Readings (I	Dynamic)	Water	Meter	Flow	Rate	Volume passed		
#Run	Smart Valve Condition	Pressure Condition	Inlet	Center	Outlet	Initial	Final	Inlet	Outlet	Flow rate Meter at inlet	Flow rate Meter at outlet	Water Meter
Units:	(Open/Close)		psi			gal	lons	g	m		gallons	
	Close	Normal	16	13	10	.0 2395.835 2406.43	8.4	8.7	10 207	10/167	10 595	
1	Close	Spiked	21	17	14	2355.855	2400.45	9.9	10.1	10.507	10.407	10.555
1	Open	Normal	24	22	9	2407.00	2416.64	7.6	7.8	0.260	0 / 1 /	0 5 5
	Open	Spiked	29	25	11	2407.09	2410.04	9	9.1	9.209	9.414	9.55
	Close	Normal	15	13	10	2416 005	2427 55	8.5	8.7	10 220	10.406	10.645
2	Close	Spiked	21	17	13	2410.905	2427.55	9.9	10.1	10.556	10.490	10.045
2	Open	Normal	25	23	8	2427 755	2427 215	7.6	7.7	0.262	0.409	0.56
	Open	Spiked	30	26	10	2427.755	2437.313	8.9	9.2	9.202	9.408	9.50
3	Close	Normal	16	14	10	2427 625	2440.22	8.6	8.7	10.261	10 / 10	10 505
	Close	Spiked	21	17	13	2437.035	7.035 2448.23	10	10.1	10.261	61 10.418	10.595
	Open	Normal	25	21	9	2448 21	2458.06	7.5	7.8	0 2/12	0.486	0.75
	Open	Spiked	29	26	11	2448.31 24	2430.00	9	9.2	9.542	9.400	9.75

		Date = 08/01/19																							
Smart Valv	e Setting = Highe	est (15 Clicks)																							
Total Test	Time = 70 sec	Surge Started at 25 sec	Surge Stoped at 55	sec	Static Wat	er Pressure	= 50 psi																		
			Pressure Gauge	Readings (I	Dynamic)	Water	Meter	Flow	v Rate	Volume passed															
#Run	Smart Valve Condition	Pressure Condition	Inlet	Center	Outlet	Initial	Final	Inlet	Outlet	Flow rate Meter at inlet	Flow rate Meter at outlet	Water Meter													
Units:	(Open/Close)		psi			gallons		gi	om	m		gallons													
	Close	Normal	16	13	10	1061 5	1972.19	8.6	8.8	10 367	10 5 2 9	10.60													
1	Close	Spiked	22	17	14	1901.5		10	10.1	10.307	10.525	10.09													
1	Open	Normal	27	25	7	1072 /05	1981.32	6.9	7.3	9 / 0 9	8 65	8 015													
	Open	Spiked	32	28	9	1972.405		8.2	8.3	0.490	8.05	8.912													
	Close	Normal	15	13	10	1001 06	1002 455	8.7	8.8	10.269	10 424	10 505													
2	Close	Spiked	21	16	14	1901.00	1992.435	10	10.2	10.208	10.424	10.393													
2	Open	Normal	28	26	7	1002.02	2001 72	7.2	7.3	0 50	0 70	00													
	Open	Spiked	32	28	9	1992.82	2001.72	8.2	8.3	8.58	0.75	0.9													
3	Close	Normal	15	13	10	2011 15	2021 70	8.7	10.468	10 210	10 469	10.64													
	Close	Spiked	22	18	14	2011.15	2021.79	9.9	10.1	10.318	18 10.468	10.64													
	Open	Normal	28	26	7	2001.72	2001.72	2001 72	2001 72	2001 72	2001 72	2001 72	2001 72	2001 72	2004 72	2001 72	2001 72	2001 72	2001 72	2010 61	7	7.3	0 5 6 0	0 710	0 00
	Open	Spiked	31	28	9			2010.01	8.2	8.3	0.000	0./10	0.03												

Annexure 3c: Air Bubble Test

		Air Bubb	le Test			Date = 07	/30/19					
Smart Valv	ve Setting = Low	est (0 clicks)				•						
Total Test	Time = 60 sec		Static Water	Pressure = 5	0 Psi							
Static Air F	Pressure = 15 ps	i	Air Supply St	Air Supply Started at 10 sec and Stopped at 40 sec								
	Smart Valve Condition	Air Supply	Water Met	er Readings	Flow Rate	Volur	ne					
#Run		Condition	Initial	Final	Outlet	Flow rate meter at outlet	Water Meter					
Units:	(Open/ Close)	(On/Off)	gallons		gpm	gallons						
	Close -	On	1114 610	1121 565	5 7.4	6 9 2 9	6 955					
1		Off	1114.010	1121.505	7	0.525	0.555					
	Open	On	1124 520	1131 170	6.8	6 5 5	6 65					
	Open	Off	1124.520	1151.170	6.7	0.55	0.05					
	Close	On	1121 170	1128 250	7.3	6 995	7 08					
2	ciose	Off	1121.170	1120.250	7	0.555	7.00					
2	Open	On	11/0 575	1156 280	6.8	6 602	6 705					
	Open	Off	1149.373	1130.280	6.7	0.002	0.705					
3 -	Close	On	1166 245	1172 200	7.3	6.051	7 025					
	CIUSE	Off	1166.345	11/3.360	7	0.951	7.035					
	Open —	On	1102 0/5	1120 /05	6.9	6 552	6.65					
		Off	1102.045	1109.495	6.8	0.332						

Annexure 3c: Air Bubble Test

		Air Bubb	le Test			Date = 08	/01/19				
Smart Valv	/e Setting = Mid	(8 Clicks)				•					
Total Test	Time = 60 sec		Static Water	Pressure = 5	0 Psi						
Static Air F	Pressure = 15 ps	i	Air Supply St	Air Supply Started at 10 sec and Stopped at 40 sec							
	Smart Valve Condition	Air Supply	Water Met	er Readings	Flow Rate	Volur	ne				
#Run		Condition	Initial	Final	Outlet	Flow rate meter at outlet	Water Meter				
Units:	(Open/ Close)	(On/Off)	gallons		gpm	gallons					
	Close -	Off	2331 760	2338 870) 7	7 533	7 110				
1		On	2331.700	2000.070	8.5	7.555	7.110				
	Onon	Off	2220 620	23/15 820	6.3	6 089	6 200				
	Open	On	2333.020	2343.020	6.4	0.005	0.200				
	Close	Off	2346 020	2352 010	7	7 665	6 800				
2	ciose	On	2340.020	2352.510	8.5	7.005	0.050				
2	Open	Off	2353 870	2250 720	6	5 796	5 860				
	Open	On	2333.870	2333.730	6	5.750	5.800				
3 -	Close	Off	2250 860	2266 620	6.8	7 416	6 760				
	CIUSE	On	2359.860	0 2366.620	8.6	7.410	6.760				
	Onen	Off	2266 740	2272 790	6	5 0/0	6.040				
	Open –	On	2300.740	2372.780	6	5.945					

Annexure 3c: Air Bubble Test

		Air Bubb	le Test			Date = 08/01/19		
Smart Valv	/e Setting = High	est (15 Clicks)				•		
Total Test	Time = 60 sec		Static Water	Pressure = 5	0 Psi			
Static Air F	Pressure = 15 ps	i	Air Supply St	arted at 10 s	ec and Stop	ped at 40 sec		
	Smart Valve	Air Supply	Water Met	er Readings	Flow Rate	Volume		
#Run	Condition	Condition	Initial	Initial Final		Flow rate meter at outlet	Water Meter	
Units:	(Open/ Close)	(On/Off)	gallons		gpm	gallons		
	Close	Off	2083 800	300 2090.890 -	7	7 59	7 090	
1		On	2003.000	2050.050	8.7	7.55	7.050	
	Open	Off	2000 860	2105 / 90	5.6	5 52	5.630	
	Open	On	2055.800	2105.450	5.7	5.52	5.050	
	Close	Off	2153 740	2160 490	7.1	7 5 2 7	6 750	
2	61030	On	2133.740	2100.450	8.5	7.527	0.750	
2	Open	Off	2161 230	2166 760	5.5	5 /01	5 530	
	Open	On	2101.250	2100.700	5.6	5.401	5.550	
3 -	Close	Off	2170 840	2177 600	6.9	7 408	6 850	
	Ciose	On	2170.840) 2177.690	8.4	7.408	0.850	
	Open —	Off	2177 050	2182 /00	5.6	5 /10	5.540	
		On	21/7.930	2105.490	5.6	5.419		

		Air Test		Date = 0	7/30/19
Smart Valv	e Setting =	Lowest (0 clicks)			
Total Test	Time = 10 S	ec			
#Dum	Smart	Static Air Droccura	Wate	r Meter Rea	adings
#Kun	Valve	Static All Pressure	Initial	Final	Volume
Units:	(Open/	psi	gall	gallons	
	Close)			1	
1	Open	11	883.24	889.61	6.37
Ŧ	Close	11	891.935	898.8	6.865
2	Open	11	903.37	910.75	7.38
2	Close	11	921.595	934.28	12.685
3 -	Open	11	949.38	957.405	8.025
	Close	11	962.765	974.21	11.445

		Air Test	Date = 08/01/19				
Smart Valv	e Setting =	Mid (8 Clicks)					
Total Test	Time = 10 S	ec					
#Pup	Smart	Static Air Drossuro	Wate	r Meter Rea	adings		
#Kull	Valve	Static All Plessure	Initial	Final	Volume		
Units: (Open/		nci	الحو	ons	collone		
Units:	Close)	psi	gan	0115	ganons		
1	Close	11	2281.465	2289.085	7.62		
Ţ	Open	11	2278.58	2279.83	1.25		
2	Close	11	2289.085	2298.55	9.465		
Z	Open	11	2298.76	2299.96	1.2		
3	Close	11	2301.22	2313.105	11.885		
	Open	11	2313.25	2314.17	0.92		

Air Test	Air Test Date = 08/01/19										
Smart Valv											
Total Test	Time = 10 S	ec									
#D.us	Smart	Statia Air Drasaura	Water Meter Readings								
#Kun	Valve	Static Air Pressure	Initial	Final	Volume						
Units: (Open/		nci		collone							
Units:	Close)	psi	gan	ganons							
1	Close	11	2247.13	2255.6	8.47						
1	Open	11	2255.62	2255.625	0.005						
2	Close	11	2257.16	2266.12	8.96						
2	Open	11	2266.23	2266.23	0						
2	Close	11	2267.79	2275.17	7.38						
5	Open	11	2275.17	2275.17	0						

Fixed Volu	Fixed Volume Test Date = 08/08/19										
Smart Valv	e Setting =	Lowest (0 c	licks)								
Static Water Pressure = 50 Psi											
Fixed Volu	Fixed Volume Flowed = 5gallons										
Water Meter Time Volume											
	Smart	Read	dings		taken to	Volume					
#Run	Valve			Flow Rate	fill a 5	Flow rate	Water				
	Condition	Initial	Final		gallon	meter at	Meter				
	(Onen/				container	Juliet					
Units:	Close)	gall	ons	gpm	sec	sec gallo					
1	Closed	3769.02	3774.1	8.8	34.54	4.956	5.08				
L	Open	3774.395	3779.575	8.6	35.85	5.046	5.18				
2	Closed	3803.61	3808.775	8.9	35.04	5.033	5.165				
2	Open	3808.83	3814.01	8.6	36.99	5.041	5.18				
2	Closed	3814.065	3819.235	8.9	35.58	5.038	5.17				
	Open	3796.87	3802.03	8.6	37.13	5.017	5.16				

Fixed Volu	me Test			Date = 08/08/19			08/19			
Smart Valv	e Setting =I	Mid (8 clicks	5)							
Static Water Pressure = 50 Psi										
Fixed Volu	Fixed Volume Flowed = 5gallons									
	Current	Water Meter			Time	Volume				
#Run	Valve Condition	Initial	Final	Flow Rate	taken to fill a 5 gallon	Flow rate meter at outlet	Water Meter			
Units:	(Open/ Close)	gallons		gpm	sec	gallons				
1	Closed	3819.235	3824.42	8.9	35.62	5.054	5.185			
	Open	3824.475	3829.645	8	39.37	5.031	5.17			
2	Closed	3829.705	3834.86	8.9	35.65	5.023	5.155			
	Open	3834.915	3840.08	7.9	39.79	5.028	5.165			
3	Closed	3840.13	3845.28	8.8	35.9	5.014	5.15			
	Open	3845.33	3850.505	7.8	39.93	5.0355	5.175			

Fixed Volu	me Test			Date = 08/08/19			08/19			
Smart Valv	e Setting =H	High (15 clio	cks)							
Static Water Pressure = 50 Psi										
Fixed Volume Flowed = 5gallons										
	Current	Water Meter			Time	Volume				
#Run	Valve Condition	Initial	Final	Flow Rate	taken to fill a 5 gallon	Flow rate meter at outlet	Water Meter			
Units:	(Open/ Close)	gallons		gpm	sec	gallons				
1	Closed	3861.065	3866.22	8.9	34.72	5.032	5.155			
	Open	3866.27	3871.435	7.6	40.88	5.042	5.165			
2	Closed	3871.49	3876.66	8.9	34.85	5.047	5.17			
	Open	3876.84	3881.995	7.6	40.95	5.027	5.155			
3	Closed	3882.045	3887.23	9	34.93	5.061	5.185			
	Open	3887.28	3892.44	7.6	40.84	5.033	5.16			

Variable Flow Rate Test							Date = 08/07/19		
Smart Valve Setting = Lowest (0 clicks)Total Test Time = 110 sec									
Static Water Pressure = 50 Psi									
Air Supply	Started at 1	LO sec and S	Stopped at 2	20 sec. Cycl	e Repeated	5 times.			
		Water Meter Readings		Flow Rate		Volume			
	Smart								
#Run	Valve Condition	Initial	Final	Normal	Reduced	Flow rate meter at outlet	Water Meter		
Unito	(Open/	gall	ons	anm		gallons			
Units:	Close)	gan	UIIS	gpm					
1	Closed	3655.655	3672.13	9.8	8.3	16.107	16.475		
1	Open	3672.285	3688.37	9.4	8	15.736	16.085		
2	Closed	3688.55	3705.015	9.8	8.3	16.334	16.465		
	Open	3705.455	3721.355	9.5	8	15.559	15.9		
3	Closed	3721.53	3737.945	9.8	8.3	16.078	16.415		
	Open	3738.135	3754.11	9.5	8	15.629	15.975		

Variable Flow Rate Test Date = 08/07/19										
Smart Valve Setting = Mid (8 clicks) Total Test Time = 110							sec			
Static Water Pressure = 50 Psi										
Air Supply	Air Supply Started at 10 sec and Stopped at 20 sec. Cycle Repeated 5 times.									
	Gunnart	Water Meter		Flow Rate		Volume				
#Run	Valve Condition	Initial Final		Normal	Reduced	Flow rate meter at outlet	Water Meter			
Units:	(Open/ Close)	gallons		gpm		gallons				
1	Closed	3556.82	3573.495	9.8	8.4	16.321	16.675			
	Open	3573.665	3588.635	9	7.5	14.673	14.97			
2	Closed	3588.82	3605.285	9.8	8.3	16.098	16.465			
	Open	3605.48	3620.44	8.8	7.3	14.672	14.96			
3	Closed	3621.23	3637.71	9.8	8.3	16.117	16.48			
	Open	3637.84	3652.74	8.8	7.2	14.597	14.9			

Variable Flow Rate Test Date = 08/07/19										
Smart Valve Setting = Highest (15 clicks) Total Test Time = 110 sec										
Static Water Pressure = 50 Psi										
Air Supply	Air Supply Started at 10 sec and Stopped at 20 sec. Cycle Repeated 5 times.									
	Smart Valve Condition	Water Meter		Flow Rate		Volume				
#Pup		Initial	ial Final	Normal	Reduced	Flow rate	Water Meter			
#Kull						meter at				
						outlet				
Units:	(Open/	الحم	ons	anm		gallons				
	Close)	gailons		ghin		ganons				
1	Closed	3524.69	3541.38	9.8	8.4	16.333	16.69			
T	Open	3436.94	3451.055	8.5	6.9	13.795	14.115			
2	Closed	3461.01	3477.515	9.7	8.4	16.072	16.505			
	Open	3478.77	3492.87	8.5	6.9	13.79	14.1			
3	Closed	3493.215	3509.87	9.8	8.3	16.194	16.655			
	Open	3510.07	3524.375	8.6	7	13.992	14.305			